
Autonomously Semantifying Wikipedia

Fei Wu Daniel S. Weld
Computer Science & Engineering Department,

University of Washington, Seattle, WA, USA

{wufei,weld}@cs.washington.edu

ABSTRACT
Berners-Lee’s compelling vision of a Semantic Web is hindered by
a chicken-and-egg problem, which can be best solved by a boot-
strapping method — creating enough structured data to motivate
the development of applications. This paper argues that autonomously
“Semantifying Wikipedia” is the best way to solve the problem. We
choose Wikipedia as an initial data source, because it is compre-
hensive, not too large, high-quality, and contains enough manually-
derived structure to bootstrap an autonomous, self-supervised pro-
cess. We identify several types of structures which can be auto-
matically enhanced in Wikipedia (e.g., link structure, taxonomic
data, infoboxes, etc.), and we describe a prototype implementation
of a self-supervised, machine learning system which realizes our
vision. Preliminary experiments demonstrate the high precision of
our system’s extracted data — in one case equaling that of humans.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Management, Design

Keywords
Information Extraction, Wikipedia, Semantic Web

1. INTRODUCTION
While compelling in the long term, Berners-Lee’s vision of the

Semantic Web [5] is developing slowly. Researchers have argued
that the relative difficulty of authoring structured data is a primary
cause [17]. A chicken-and-egg problem results: if there was more
structured data available, people would develop applications; but
without compelling applications, it is not worth people’s time to
structure their data. In order to break this deadlock, a bootstrapping
method is needed — some method of automatically structuring a
large amount of existing data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’07, November 6–8, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-803-9/07/0011 ...$5.00.

The ideal vision is a system which autonomously extracts infor-
mation from the Web. Because of the wide range of information
categories, supervised machine learning will require too much hu-
man effort to scale. Instead, such a system should use unsuper-
vised or self-supervised techniques. Several systems of this form
have been proposed, e.g. MULDER [18], AskMSR [7], and KNOW-
ITALL [14], showing some signs of early success. The insight un-
derlying these systems stems from the huge redundancy of knowl-
edge on the Web — many things worth extracting are stated many
times, in different ways and on disparate Web pages. As a result,
complex linguistic processing is unnecessary, because one of the
occurrences is likely written in a form which can be correctly ex-
tracted with simple methods. Furthermore, the Web’s statistical
properties, as calculated by a search engine, are a powerful tool for
extraction [8, 13, 12]. Unfortunately, many of the things published
on the Web are incorrect (e.g. “Elvis killed John Kennedy”), and
the increasing linguistic sophistication of link spam poses a grow-
ing challenge to these methods.

Our paper proposes a very different approach to massive infor-
mation extraction. Instead of using the whole Web, we focus on a
single site: en.wikipedia.org.1

1.1 Why Wikipedia?
Focusing on Wikipedia largely solves the problem of inaccurate

source data, but introduces new challenges. For example, redun-
dancy is very greatly reduced — apparently increasing the need for
deep syntactic analysis. On the other hand, Wikipedia has several
attributes that make it ideal for extraction:

• Wikipedia gives all important concepts their own unique iden-
tifier — the URI of a definitional page. The first reference to
such a concept typically includes a link which can be used
for disambiguation. As a result, homonyms are much less of
a problem than in unstructured text.

• Infoboxes, tabular summaries of an object’s key attributes,
may be used as a source of training data, allowing for self-
supervised learning.

• Wikipedia lists and categories provide a simple type system
and rudimentary taxonomic hierarchy, respectively.

• Redirection pages can be used to induce synonyms.

• Disambiguation pages can be used to generate a list of can-
didate targets for homonym resolution, e.g. to increase the
number of links between Wikipedia pages.

1Actually, we view Wikipedia simply as a first bootstrapping step,
which will enable subsequent extraction from the Web as a whole.

41

Figure 1: Sample Wikipedia infobox.

• With over 1.7 million articles, Wikipedia is appropriately
sized — big enough to provide a sufficient dataset, yet enough
smaller than the full Web that a hundred-node cluster is un-
necessary for corpus processing.

1.2 Overview
Our grand vision is a combination of autonomous and collab-

orative techniques for semantically marking up Wikipedia. Such
a system would create or complete infoboxes by extracting infor-
mation from the page, rationalize tags, merge replicated data using
microformats, disambiguate links and add additional links where
needed, engage humans to verify information as needed, and per-
haps add new topic pages (e.g., by looking for proper nouns with no
corresponding primary page or perhaps by tracking news stories).

As a first step towards this vision we present KYLIN, a proto-
type which automates part of this vision. KYLIN looks for classes
of pages with similar infoboxes, determines common attributes,
creates training examples, learns CRF extractors, and runs them
on each page — creating new infoboxes and completing others.
KYLIN also automatically identifies missing links for proper nouns
on each page, resolving each to a unique identifier. Experiments
show that the performance of KYLIN is roughly comparative with
manual labelling in terms of precision and recall. On one domain,
it does even better.

2. GENERATING INFOBOXES
Many Wikipedia articles include infoboxes, a concise, tabular

summary of the subject’s attributes. For example, Figure 1 shows a
sample infobox from the article on “Abbeville County,” which was
generated dynamically from the data shown in Figure 2.

Because of their relational nature, infoboxes may be easily con-
verted to semantic form as shown by Auer and Lehmann’s DBpe-
dia [3]. Furthermore, for each class of objects, infoboxes and their

{{US County infobox|
 county = Abbeville County|
 state = South Carolina |
 seal = |
 map = Map of South Carolina highlighting Abbeville County.png |
 map size = 200|
 founded = 1785 |
 seat = [[Abbeville, South Carolina|Abbeville]] |
 area = 1,324 [[square kilometre|kmÂ²]] (511 [[square mile|miÂ²]]) |
 area land = 1,316 kmÂ² (508 miÂ²) |
 area water = 8 kmÂ² (3 miÂ²) |
 area percentage = 0.59% |
 census yr = 2000|
 pop = 26,167 |
 density = 20|
 web =|
|}}

Figure 2: Attribute/value data generating the infobox in Fig. 1

templates implicitly define the most important and representative
attributes; hence, infoboxes are valuable ontological resources. In
this section we explain how KYLIN automatically constructs and
completes infoboxes. The basic idea is to use existing infoboxes as
a source of training data with which to learn extractors for gather-
ing more data. As shown in Figure 3, KYLIN’s infobox generation
module has three main components: preprocessor, classifier, and
extractor.

The preprocessor performs several functions. First, it selects and
refines infobox schemata, choosing relevant attributes. Secondly,
the preprocessor generates a dataset for training machine learners.

KYLIN trains two types of classifiers. The first type predicts
whether a given Wikipedia article belongs to certain class. The
second type of classifier predicts whether a given sentence contains
the value of a given attribute. If there are C classes and A attributes
per class, KYLIN automatically learns C+AC different classifiers.

Extractors are learned routines which actually identify and clip
out the necessary attribute values. KYLIN learns one extractor per
attribute per class; each extractor is a conditional random fields
(CRF) model. Training data are taken from existing infoboxes as
dictated by the predictions of the classifiers.

We explain the operation and performance of these modules be-
low. But first we discuss the nature of the existing Wikipedia in-
foboxes and why they are harder to use for training than might be
expected.

2.1 Challenges for Infobox Completion
While infoboxes contain much valuable information, they suffer

from several challenging problems:

Incompleteness: Since infobox and article text are kept separate
in Wikipedia, existing infoboxes are manually created when human
authors create or edit an article — a tedious and time-consuming
process. As a result, many articles have no infoboxes and the ma-
jority of infoboxes which do exist are incomplete. For example,
in the “U.S. County” class less than 50% of the articles have an
infobox. Still there in many classes, there is plenty of data for
training.

Inconsistency: The manual creation process is noisy, causing
contradictions between the article text and the infobox summary.
For example, when we manually checked a random sample of 50
infoboxes in the “U.S. County” class, we found that 16% contained
one or more errors. We suspect that many of the errors are intro-
duced when an author updates an article with a revised attribute

42

Wikipedia Preprocessor

Schema
Refiner

Training Data
Constructor

Classifier

Extractor

Document
Classifier

Sentence
 Classifier

CRF Model Infobox

Figure 3: Architecture of KYLIN’s infobox generator.

U.S. County Infobox

0
0.2
0.4
0.6
0.8

1

co
un

ty

po
p

se
at

map
 si

ze

are
a

are
a l

an
d

web

se
al

are
a k

m

are
a w

ate
r k

m

UTC of
fse

t

DST of
fse

t

are
a m

i

lar
ge

st
cit

y

ce
ns

us
 m

ap

se
all

ink

se
al

siz
e

ce
ns

us
 es

t

lea
de

r_n
am

e

log
o

nic
kn

am
e

co
un

ty
may

or

metr
o

ce
ns

us
 ye

ar

Figure 4: Usage percentage for attributes of the “U.S. County”
infobox template.

value (e.g., population) and neglects to change both the text and
the infobox — another effect of keeping infobox and text separate.

Schema Drift: Since users are free to create or modify infobox
templates, and since they typically create an article by copying
parts (e.g., the infobox template) from a similar article, the infobox
schema for a class of articles tends to evolve during the course of
authoring. This leads to several problems: schema duplication, at-
tribute duplication, and sparseness. As an example of schema du-
plication, note that four different templates: “U.S. County” (1428),
“US County” (574),“Counties”(50) and “County” (19) are used to
describe the same type of object. Similarly, multiple tags denote
the same semantic attribute. For example, “Census Yr”, “Census
Estimate Yr”, “Census Est.” and “Census Year” all mean the same
thing. Furthermore, many attributes are used very rarely. Figure 4
shows the percent usage for the attributes of the “U.S. County” in-
fobox template; only 29% of the attributes are used by 30% or more
of the articles, and only 46% of the attributes are used by at least
15% of the articles.

Typefree System: The design of Wikipedia is deliberately low-
tech, to facilitate human generation of content, and infoboxes are
no exception. In particular, there is no type system for infobox at-
tributes. For example, the infobox for “King County, Washington”
has a tuple binding the attribute “land area” to equal “2126 square
miles” and another tuple defining “land area km” to be “5506 square
km” despite the fact that one can be easily derived from another.
Clearly this simple approach bloats the schema and increases in-
consistency; the similarity between these related attributes also in-
creases the complexity of extraction.

Irregular Lists: List pages, which link to large numbers of sim-
ilar articles, are a potential source of valuable type information.
Unfortunately, because they are designed for human consumption,

automated processing is difficult. For example, some list pages sep-
arate information in items, while others use tables with different
schemas. Sometimes, lists are nested in an irregular, hierarchical
manner, which greatly complicates extraction. For example, the
“List of cities, towns, and villages in the United States” has an item
called “Places in Florida”, which in turn contains “List of counties
in Florida.”

Flattened Categories: While Wikipedia’s category tag system
seems promising as a source of ontological structure, it is so flat
and quirky that utility is low. Furthermore, many tags are purely
administrative, e.g. “Articles to be merged since March 2007.”

2.2 Preprocessor
The preprocessor is responsible for creating a training suite that

can be used to learn extraction code for creating infoboxes. We
divide this work into two functions: schema refinement and the
construction of training datasets.

Schema Refinement: The previous section explained how col-
laborative authoring leads to infobox schema drift, resulting in the
problems of schema duplication, attribute duplication and sparsity.
Thus, a necessary prerequisite for generating good infoboxes for a
given class is determining a uniform target schema.

This can be viewed as an instance of the difficult problem of
schema matching [11]. Clearly, many sophisticated techniques can
be brought to bear, but we adopt a simple statistical approach for
our prototype. KYLIN scans the Wikipedia corpus and selects all
articles containing the exact name of the given infobox template
name. Next, it catalogs all attributes mentioned and selects the
most common. Our current implementation restricts attention to
attributes used in at least 15% of the articles, which yields plenty
of training data.

Constructing Training Datasets: Next, the preprocessor con-
structs training datasets for use when learning classifiers and ex-
tractors. KYLIN iterates through the articles. For each article with
an infobox mentioning one or more target attributes, KYLIN seg-
ments the document into sentences, using the OpenNLP library [1].
Then, for each target attribute, KYLIN tries to find a unique, corre-
sponding sentence in the article. The resulting labelled sentences
form positive training examples for each attribute. Other sentences
form negative training examples.

Our current implementation uses several heuristics to match sen-
tences to attributes. If an attribute’s value is composed of several
sub-values (e.g., “hub cities”), KYLIN splits them and processes
each sub-value as follows:

1. For each internal hyperlink in the article and the infobox at-

43

tributes, find its unique primary URI in Wikipedia (through a
redirect page if necessary). For example, both “USA” and
“United States of America” will be redirected to “United
States”. Replace the anchor text of the hyperlink with this
identifier.

2. If the attribute value is mentioned by exactly one sentence
in the article, use that sentence and the matching token as a
training example.

3. If the value is mentioned by several sentences, KYLIN deter-
mines what percentage of the tokens in the attribute’s name
are in each sentence. If the sentence matching the highest
percentage of tokens has at least 60% of these keywords,
then it is selected as a positive training example. For exam-
ple, if the current attribute is “TotalArea: 123”, then KYLIN
might select the sentence “It has a total area of 123 square
kms”, because “123” and the tokens “total” and “area” are
all contained in the sentence.

Unfortunately, there are several difficulties preventing us from
getting a perfect training dataset. First, OpenNLP’s sentence detec-
tor is imperfect. Second, the article may not even have a sentence
which corresponds to an infobox attribute value. Third, we require
exact value-matching between attribute values in the sentence and
infobox. While this strict heuristic ensures precision, it substan-
tially lowers recall. The values given in many are incomplete or
written differently than in the infobox. Together, these factors con-
spire to produce a rather incomplete dataset.2 Fortunately, we are
still able to train our learning algorithms effectively.

2.3 Classifying Documents & Sentences
KYLIN learns two types of classifiers. For each class of article

being processed, a heuristic document classifier is used to recog-
nize members of the class. For each target attribute within a class
a sentence classifier is trained in order to predict whether a given
sentence is likely to contain the attribute’s value.

Document Classifier: To accomplish autonomous infobox gen-
eration, KYLIN must first locate candidate articles for a given class
— a familiar document classification problem. Wikipedia’s manually-
generated list pages, which gather concepts with similar properties,
and category tags are highly informative features for this task. For
example, the “List of U.S. counties in alphabetical order” points
to 3099 items; furthermore, 68% of those items have additionally
been tagged as “county” or “counties.” Eventually, we will use
lists and tags as features in a Naive Bayes, Maximum Entropy or
SVM classifier, but as an initial baseline we used a simple, heuris-
tic approach. First, KYLIN locates all list pages whose titles con-
tain infobox class keywords. Second, KYLIN iterates through each
page, retrieving the corresponding articles but ignoring tables. If
the category tags of the retrieved article also contains infobox class
keywords, KYLIN classifies the article as a member of the class. As
shown in Section 4, our baseline document classifier achieves very
high precision (98.5%) and reasonable recall (68.8%).

Sentence Classifier: It proves useful for KYLIN to be able to
predict which attribute values, if any, are contained in a given sen-
tence. This can be seen as a multi-class, multi-label, text classifica-
tion problem. To learn these classifiers, KYLIN uses the training set
produced by the preprocessor (Section 2.2). For features, we seek

2Alternatively, one can view our heuristics as explicitly preferring
incompleteness over noise — a logical consequence of our choice
of high precision extraction over high-recall.

Feature Description Example
First token of sentence Hello world
In first half of sentence Hello world

In second half of sentence Hello world
Start with capital Hawaii

Start with capital, end with period Mr.
Single capital A

All capital, end with period CORP.
Contains at least one digit AB3

Made up of two digits 99
Made up of four digits 1999
Contains a dollar sign 20$

Contains an underline symbol km_square
Contains an percentage symbol 20%

Stop word the; a; of
Purely numeric 1929
Number type 1932; 1,234; 5.6

Part of Speech tag
Token itself

NP chunking tag
String normalization:

capital to “A”, lowercase to “a”,
digit to “1”, others to “0” TF − 1 =⇒ AA01

Part of anchor text Machine Learning
Beginning of anchor text Machine Learning

Previous tokens (window size 5)
Following tokens (window size 5)

Previous token anchored Machine Learning
Next token anchored Machine Learning

Table 1: Feature sets used by the CRF extractor

a domain-independent set which is fast to compute; our current im-
plementation uses the sentence’s tokens and their part of speech
(POS) tags as features.

For our classifier, we employed a Maximum Entropy model [24]
as implemented in Mallet [21], which predicts attribute labels in a
probabilistic way — suitable for multi-class and multi-label classi-
fications.3 To decrease the impact of a noisy and incomplete train-
ing dataset, we employed bagging [6] rather than boosting [22] as
recommended by [25].

2.4 Learning Extractors
Extracting attribute values from a sentence may be viewed as

a sequential data-labelling problem. We use the features shown in
Table 1. Conditional random fields (CRFs) [19] are a natural choice
given their leading performance on this task; we use the Mallet [21]
implementation. We were confronted with two interesting choices
in extractor design, and both concerned the role of the sentence
classifier. We also discuss the issue of multiple extractions.

Training Methodology: Recall that when producing training
data for extractor-learning, the preprocessor uses a strict pairing
model. Since this may cause numerous sentences to be incorrectly
labelled as negative examples, KYLIN uses the sentence classifier
to relabel some of the training data as follows. All sentences which
were assigned to be negative training examples by the preprocessor
are sent through the sentence classifier; if the classifier disagrees
with the preprocessor (i.e., it labels them positive), then they are

3We also experimented with a Naive Bayes model, but its perfor-
mance was slightly worse.

44

eliminated from the training set for this attribute. Experiments in
Section 4 show that this small adjustment greatly improves the per-
formance of the learned CRF extractor.

KYLIN trains a different CRF extractor for each attribute, rather
than training a single master extractor that clips all attributes. We
chose this architecture largely for simplicity — by keeping each at-
tribute’s extractor independent, we ensure that the complexity does
not multiply.

Classifier’s Role in Extraction: We considered two different
ways to combine the sentence classifier and extractor for infobox
generation. The first is an intuitive pipeline mode where the sen-
tence classifier selects the sentences which should be sent to the
CRF extractor. We expected that this approach would decrease the
number of false positives with a potential loss in recall. The sec-
ond architecture treats the classifier’s prediction as a CRF feature,
but applies the extractor to all sentences. We expected better recall
at the expense of speed. The experiments of Section 4 shows that
our expectations were fulfilled, but the pipeline’s boost to precision
was higher than expected, creating a more effective architecture.

Multiple Extractions: Sometimes the extractor finds multiple
values for a single attribute. This often happens as a mistake (e.g.
because of an extractor error or redundant text in the article) but can
also happen when the attribute is not functional (e.g. a band likely
has several members). KYLIN distinguishes the cases by seeing if
multiple values are found in the attribute’s training set. If so, the
set of extractions is returned as the final result. Otherwise, KYLIN
returns the single value with the highest confidence.

3. AUTOMATIC LINK GENERATION
A second goal for KYLIN is autonomous link generation for

Wikipedia articles. Two Wikipedia resources are useful for this
task. Disambiguation pages, which list alternative definitions of a
term along with a concise description, help distinguish the correct
target for new links. Redirection pages, which redirect a pointer
for one term to another article, can be used to identify sets of syn-
onyms. KYLIN uses the following procedure to generate internal
links.

First, KYLIN extracts each noun-phrase (NP) from the article,
again using OpenNLP. Next, it converts the NPs to their normal-
ized forms. For example, determinants like “a” and “the” are dis-
carded. Only proper nouns (i.e., whose first word is capitalized)
are retained as candidates for link generation.4 Finally, for each
candidate NP, KYLIN checks the following conditions in order; if
one matches, it adds a link.

1. MatchAnchor: Exactly matches some existing anchor text
in the article.

2. MatchTitle: Exactly matches the title of the article.

3. MatchURI: Matches a primary URI in Wikipedia without
ambiguity.

4. Disambiguation: If there is a corresponding disambiguation
page, define the context of the NP to be the title of the current
article plus the sentence where the NP appears, minus all stop
words. For each entry in the disambiguation page, check
whether the overlap degree between the entry and the context

4A random sample of 50 Wikipedia articles yielded 1213 existing
hyperlinks edited by users, and 70.2% had proper nouns as anchors.
Clearly, KYLIN should add links defining things other than proper
nouns, but selecting which are worthy is a difficult future topic.

County Airline Actor University
Predicted 3302 2764 6984 4309

Precision (%) 100 100 100 94

Table 2: Estimated precision of the document classifier.

is over threshold (e.g. 0.3 in our experiments); if so, choose
the best match.

5. InTitle: NP is contained in the title.

6. InAnchor: NP is contained in some existing anchor text.

This technique, while ad hoc, performs well. But one might
question is whether our matching heuristics are applied in the cor-
rect order. We answer this question experimentally in Section 4.

KYLIN assumes that a given NP string denotes the same con-
cept within an article, which is reasonable for Wikipedia. However,
when a NP appears in a different sentence, its context changes and
hence the disambiguation rule may predict a different target. Thus
KYLIN identifies all potential targets for a NP and chooses the one
with the highest confidence — increasing both precision and recall.
To see why, consider the meaning of “Portland” in the following
two sentences:

• FBI agents from Portland handled the case, in which pay-
ment of a demanded ransom of $200,000 secured the release
of the victim.

• The dominant intercity transportation link between Tacoma
and other parts of the Puget Sound is Interstate 5, which links
Tacoma with Seattle to the north and Portland, Oregon, to the
south.

Though it is hard to determine the correct target for “Portland”
in the first sentence, the context is much more informative in the
second.

4. EXPERIMENTS
To avoid overloading the Wikipedia server, we downloaded the

2007.02.06 data in order to test the performance of KYLIN’s in-
fobox generation and link creation algorithms.

4.1 Infobox Generation
For testing, we selected four popular classes: U.S. county, air-

line, actor, and university. Each was among the top 100 classes in
terms of infobox usage. We address four questions:

• What are the precision and recall of the document classifier?

• What are the precision and recall of the infobox attribute ex-
tractor and how does it compare to the performance of human
users?

• Is the precision of the extractor improved by pruning the set
of training data with the sentence classifier? What is the cost
in terms of recall?

• Should one use the sentence classifier as a serial pipeline
filter preceding the extractor or simply make the classifier’s
output available as a feature for the extractor’s use?

45

County Airline Actor University
Tagged 1245 791 3819 4025

Recall (%) 98.1 85.3 41.3 50.3

Table 3: Estimated recall of the document classifier

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Precision vs. Recall

Recall

P
re

ci
si

on

Actor
Actor(Manual)
Airline
Airline(Manual)
University
University(Manual)
County
County(Manual)

Figure 5: Precision vs. recall curves of infobox generation. The
individual points correspond to the performance of Wikipedia
users’ manual edition.

Document Classification: We use sampling plus human labelling
to estimate the precision and recall of the classifiers. We measure
the precision of a class’ classifier by taking a random sample of 50
pages which were predicted to be of that class and manually check-
ing their accuracy. Table 2 lists the estimated precision for our four
classes. On average, the classifiers achieve 98.5% precision.

To estimate recall, we introduce some notation, saying that an
article is tagged with a class if it has had an infobox of that type
manually created by a human author. We use the set of tagged pages
as a sample from the universal set and count how many of them are
identified by the classifier. Table 3 shows the detailed results, but
averaging uniformly over the four classes yields an average recall
of 68.8%. This is quite good for our baseline implementation, and
it seems likely that a machine-learning approach could result in
substantially higher recall.

Note that there are some potential biases which might potentially
affect our estimates of precision and recall. First, as mentioned in
Section 2.1, some list pages are challenging to exploit, and list page
formatting varies a lot between different classes. Second, articles
with user-added infobox classes tend to be on more popular topics,
and these may have a greater chance to be included in list pages.
This could lead to minor overestimation of KYLIN recall. But we
believe that these factors are small, and our estimates of precision
and recall are accurate.

Infobox Attribute Extractor: In order to be useful as an au-
tonomous system, KYLIN must be able to extract attribute values
with very high precision. High recall is also good, but of less im-
portance. Since our CRF extractor outputs a confidence score for
its extraction, we can modulate the confidence threshold to control
the precision/recall tradeoff as shown in Figure 5.

Interestingly, the precision/recall curves are extremely flat, which
means the precision is rather stable w.r.t the variation of recall. In

People System
Class Pre.(%) Rec.(%) Pre.(%) Rec.(%)

County 97.6 65.9 97.3 95.9
Airline 92.3 86.7 87.2 63.7
Actor 94.2 70.1 88.0 68.2

University 97.6 90.5 73.9 60.5

Table 4: Relative performance of people and KYLIN on infobox
attribute extraction.

practice, KYLIN is able to automatically tune the confidence thresh-
old based on training data provided by the preprocessor for various
precision/recall requirements. In order to reduce the need for hu-
man fact checking, one can set a high threshold (e.g., 0.99), boost-
ing precision. A lower threshold (e.g. 0.3) extends recall substan-
tially, at only a small cost in precision.

In our next experiment, we use a fixed threshold of 0.6, which
achieves both reasonable precision and recall for all classes. We
now ask how KYLIN compares against strong competition: human
authors. For each class, we randomly selected 50 articles with exis-
ting infobox templates. By manually extracting all attributes men-
tioned in the articles, we could check the performance of both the
human authors and of KYLIN. The results are shown in Table 4. We
were proud to see that KYLIN performs better on the “U.S. County”
domain, mainly because its numeric attributes are relatively easy to
extract. In this domain, KYLIN was able to successfully recover a
number of values which had been neglected by humans. For the
“Actor” and “Airline” domains, KYLIN performed slightly worse
than people. And in the “University” domain, KYLIN performed
rather badly, because of implicit references and the type of flexi-
ble language used in those articles. For example, KYLIN extracted
“Dwight D. Eisenhower” as the president of “Columbia University”
from the following sentence.

• Former U.S. President Dwight D. Eisenhower served as Pres-
ident of the University.

Unfortunately, this is incorrect, because Eisenhower was a for-
mer president (indicated somewhere else in the article) and thus the
incorrect value for the current president.

Implicit expressions also lead to challenging extractions. For
example, the article on “Binghamton University” individually de-
scribes the number of undergraduate and graduate students in each
college and school. In order to correctly extract the total number
of students, KYLIN would need to reason about disjoint sets and
perform arithmetic, which is beyond the abilities of most textual
entailment systems [9, 20], let alone one that scale to a Wikipedia-
sized corpus.

Using the Sentence Classifier with the Attribute Extractor:
Recall that KYLIN uses the sentence classifier to prune some of the
negative training examples generated by the preprocessor before
training the extractor. We also explored two ways of connecting
the sentence classifier to the extractor: as a pipeline (where only
sentences satisfying the classifier are sent to the extractor) or by
feeding the extractor every sentence, but letting it use the classi-
fier’s output as a feature. In this experiment, we consider four pos-
sible configurations:

• Relabel, Pipeline — uses the classifier’s results to relabel the
training dataset for the extractor and uses a pipeline architec-
ture.

• Relabel, #Pipeline — also uses the classifier’s results to re-
label the training dataset for the extractor, but doesn’t use a

46

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Precision vs. Recall on Actor

Recall

P
re

ci
si

on

#Relabel, #Pipeline
Relabel, #Pipeline
#Relabel, Pipeline
Relabel, Pipeline
Manual

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Precision vs. Recall on Airline

Recall

P
re

ci
si

on

#Relabel, #Pipeline
Relabel, #Pipeline
#Relabel, Pipeline
Relabel, Pipeline
Manual

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Precision vs. Recall on U.S.County

Recall

P
re

ci
si

on

#Relabel, #Pipeline
Relabel, #Pipeline
#Relabel, Pipeline
Relabel, Pipeline
Manual

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Precision vs. Recall on University

Recall

P
re

ci
si

on

#Relabel, #Pipeline
Relabel, #Pipeline
#Relabel, Pipeline
Relabel, Pipeline
Manual

Figure 6: Precision and recall curves with different policies on combining sentence classifier and CRF extractor. The cross points
correspond to Wikipedia users’ manual edition.

pipeline (instead it provides the classifier’s output to the CRF
extractor).

• #Relabel, Pipeline — training examples are not relabelled,
but the pipelined architecture is used.

• #Relabel, #Pipeline — training examples are not relabelled
and a pipeline is eschewed (the classifier’s output is fed di-
rectly to the extractor).

Figure 6 shows the detailed results. In most cases the “Relabel,
Pipeline” policy achieves the best performance. We draw the fol-
lowing observations:

• Noise and incompleteness within the training dataset pro-
vided by the Preprocessor makes the CRF extractor unsta-
ble, and hampers its performance (especially recall) in most
cases.

• By using classifier to refine the training dataset, many false
negative training examples are pruned; this helps to enhance
the CRF extractor’s performance, especially in terms of ro-
bustness and recall.

• The pipeline architecture improves precision in most cases
by reducing the risk of false positive extractions on irrelevant
sentences. But since fewer sentences are even given to the
extractor, recall suffers.

4.2 Internal Link Generation
In this section we address the following questions:

• What are the precision and recall of KYLIN’s link-generation
method?

• How do the heuristic rules effect this performance? Can
KYLIN figure out the right order in which to apply the heuris-
tics via self-supervised learning?

The first question is easy. Sampling over 50 randomly generated
pages, we found 1213 unique human-generated hyperlinks, 852 of
which were anchored by proper nouns. The set of pages contained
additional 369 unique proper nouns that we judged deserving of
a link.5 Thus, we see that human authors display 69.8% recall,
5This judgment is a bit subjective and it is important to note that
we are treating links as semantic structure whose objective is to
uniquely specify the noun’s meaning — not facilitate a human’s
reading pleasure.

47

Heuristic Pre.(%) Rec.(%)
MatchTitle 100 0.2

MatchAnchor 92.8 9.0
MatchUrl 85.0 49.2

Disambiguation 38.5 1.8
InTitle 18.8 0.3

InAnchor 14.3 0.1

Table 5: Performance of various link-generation heuristics on
existing links.

Heuristic Pre.(%) Rec.(%)
MatchTitle 100 4.06

MatchAnchor 97.9 12.7
MatchUrl 90.8 42.5

Disambiguation 62.5 4.07
InTitle 75.4 11.6

InAnchor 57.8 17.1

Table 6: Performance of various link-generation heuristics on
new links.

presumably with near 100% precision. When KYLIN was asked to
find links for the proper nouns left unlinked by humans, it generated
291 links of which 261 were correct. This yields a link-generation
precision of 89.7% and a human-level recall of 70.7%.

The six heuristics listed in Section 3 form the core of KYLIN’s
link generator. Each of the heuristics sounds plausible, but as one
might suspect, the correct order matters considerably. Interestingly,
we can use the set of human-authored internal links as another
training set and use it to choose the right order for the heuristics
— another form of self-supervised learning.

We first measure each heuristic’s performance on the suite of
user-added hyperlinks, and then order them in order of decreasing
precision score. Table 5 shows each heuristic’s precision on a ran-
dom sample of 50 Wikipedia articles. The order determined by
KYLIN matches well with our intuitions. To demonstrate that the
ordering works well on as-yet unlinked noun phrases, we tested it
on a manually-labelled sample of 50 articles (Table 6). Note that
while the individual numbers have changed substantially, the rela-
tive order is stable.

The difference in quantitative precision/recall numbers is due to
the distinct characteristics of the nouns in datasets corresponding
to Tables 5 and 6. Table 5 is based on existing anchor texts edited
by users. A quick check of Wikipedia articles reveals that users
seldom add links pointing to the current article, which leads to a
performance decrease of the “MatchTitle” and “InTitle” heuris-
tics. If the same NP appears several times, users tend to only
add a link at its first occurrence, which effects the “MatchAnchor”
and “InAnchor” heuristics. When users add a link to help disam-
biguate concepts, usually they are “harder” than randomly picked
noun-phrases, which explains the lower performance of the “Dis-
ambiguation” heuristic in Table 5.

If human linking behavior is so different from KYLIN’s exhaus-
tive approach, one might question the utility of automatic link gen-
eration itself. We agree that KYLIN’s links might not help human
readers as much as those added by human authors, but our objective
is to help programs, not people! By disambiguating numerous noun
phrases by linking to a unique identifier, we greatly simplify sub-
sequent processing. Furthermore, we note that many are to pages
which have not yet been linked in the article.

For the next experiment, we enumerated all 6! = 720 heuristic

Ordering Pre.(%) Rec.(%)
KYLIN 89.7 70.7

Best Order 90.0 71.0
Worst Order 78.4 61.8

Table 7: Effect of different heuristic orders on link generation
performance.

orderings and measured the precision and recall of the collection as
a whole. Table 7 lists the performance of KYLIN’s ordering as well
as the best and worst orders. We can see there is little difference
between KYLIN and the optimal one, and both of them perform
more than 10% better than the worst ordering.

5. RELATED WORK
We group related work into several categories: bootstrapping

the semantic web, unsupervised information extraction, extraction
from Wikipedia, and related Wikipedia-based systems.

Bootstrapping the Semantic Web: REVERE [17] aims to cross
the chasm between structured and unstructured data by providing
a platform to facilitate the authoring, querying and sharing of data.
It relies on human effort to gain semantic data, while our KYLIN is
fully autonomous. DeepMiner [30] bootstraps domain ontologies
for semantic web services from source web sites. It extracts con-
cepts and instances from semi-structured data over source interface
and data pages, while KYLIN handles both semi-structured and un-
structured data in Wikipedia. The SemTag and Seeker [10] systems
perform automated semantic tagging of large corpora. They use the
TAP knowledge base [27] as the standard ontology, and use it to
match instances on the Web. In contrast, KYLIN doesn’t assume
any particular ontology, and tries to extract all desired semantic
data within Wikipedia.

Unsupervised Information Extraction: Since the Web is large
and highly heterogeneous, unsupervised and self-supervised learn-
ing is necessary for scaling. Several systems of this form have
been proposed. MULDER [18] and AskMSR [7, 13] use the Web
to answer questions, exploiting the fact that most important facts
are stated multiple times in different ways, which licenses the use
of simple syntactic processing. KNOWITALL [14] and TEXTRUN-
NER [4] use search engines to compute statistical properties en-
abling extraction. Each of these systems relies heavily on the Web’s
information redundancy. However, unlike the Web, Wikipedia has
little redundancy — there is only one article for each unique con-
cept in Wikipedia. Instead of utilizing redundancy, KYLIN exploits
Wikipedia’s unique structure and the presence of user-tagged data
to train machine learners.

Information Extraction from Wikipedia: Several other sys-
tems have addressed information extraction from Wikipedia. Auer
and Lehmann developed the DBpedia [3] system which extracts in-
formation from existing infoboxes within articles and encapsulate
them in a semantic form for query. In contrast, KYLIN populates
infoboxes with new attribute values. Suchanek et al. describe the
YAGO system [28] which extends WordNet using facts extracted
from Wikipedia’s category tags. But in contrast to KYLIN, which
can learn to extract values for any attribute, YAGO only extracts
values for a limited number of predefined relations.

Nguyen et al. proposed to extract relations from Wikipedia by
exploiting syntactic and semantic information [23]. Their work
is the most similar with ours in the sense of stepping towards au-
tonomously semantifying both semi-structured and unstructured data.
However, there are still several obvious distinctions. First, their

48

system only classifies whether a sentence is related to some at-
tribute, while KYLIN also extracts the particular attribute value
within the sentences. Second, they only care about the relationship-
typed attributes between concepts (i.e. objects having their own
identifying pages), while KYLIN tries to extract all important at-
tributes. Third, their system targets a limited number of predefined
attributes, while KYLIN can dynamically refine infobox templates
for different domains.

Other Wikipedia-Related Systems: Völkel et al. proposed an
extension to be integrated with Wikipedia, which allows the typing
of links between articles and the specification of typed data inside
the articles in an easy-to-use manner [29]. Though a great step to-
wards semantifying Wikipedia, it still relies on manual labelling by
human users. Gabrilovich et al. used Wikipedia to enhance text
categorization [15], and later proposed a semantic-relatedness met-
ric using Wikipedia-based explicit semantic analysis [16]. Ponzetto
et al. derived a large scale taxonomy containing subsumption rela-
tions based on the category system in Wikipedia [26]. Adafre et
al. tried to discover missing links in Wikipedia by first computing
a cluster of highly similar pages around a target page, then iden-
tifying candidate links from those similar pages [2]. In contrast,
KYLIN searches all proper noun-phrases within the target page for
link creations.

6. DISCUSSION
Although our objective is the automatic extraction of structured

data from natural-language text on Wikipedia and eventually the
whole Web, our investigation has uncovered some lessons that di-
rectly benefit Wikipedia and similar collaborative knowledge repos-
itories. Specifically, Wikipedia could greatly improve consistency
if it were augmented with a software robot (perhaps based on KYLIN)
which functioned as an automatic fact-checker. When an article
was created or edited, this agent could:

• Suggest new entries for an associated infobox

• Detect inconsistencies between the text and infobox attributes

• Note schema inconsistencies in infoboxes and suggest at-
tribute names which have been used previously

• Detect incomplete disambiguation pages and add links to
other matching articles

• Suggest additional internal links.

6.1 Conclusion
This paper described KYLIN, a prototype system which autonomously

extracts structured data from Wikipedia and regularlizes its internal
link structure. Since KYLIN uses self-supervised learning, which is
bootstrapped on existing user-contributed data, it requires little or
no human guidance. We make the following contributions:

• We propose bootstrapping the Semantic Web by mining Wikipedia
and we identify some unique challenges (lack of redundancy)
and opportunities (unique identifiers, user-supplied training
data, lists, categories, etc.) of this approach. We also identify
additional issues resulting from Wikipedia’s growth through
decentralized authoring (e.g., inconsistency, schema drift, etc.).
This high-level analysis should benefit future work on Wikipedia
and similar collaborative knowledge repositories.

• We describe a systems for automatically generating attribute/value
pairs summarizing an article’s properties. Based on self-
supervised learning, KYLIN achieves performance which is

roughly comparable with that of human editors. In one case,
KYLIN does even better.

• By automatically identifying missing internal links for proper
nouns, more semantic tags are added. Because these links re-
solve noun phrases to unique identifiers, they are useful for
many purposes such as information retrieval, structural anal-
ysis, and further semantic processing. Meaning lies in the
graph structure of concepts defined in terms of each other,
and KYLIN helps complete that graph.

• Collaboratively authored data is rife with noise and incom-
pleteness. We identify robust learning methods which can
cope in this environment. Extensive experiments demon-
strate the performance of our system and characterize some
of the crucial architectural choices (e.g., the optimal order-
ing of heuristics, the utility of classifier-based training data
refinement, a pipelined architecture for attribute extraction).

6.2 Future Work
For an initial prototype, KYLIN performs quite well. But there

are numerous directions for improvement. Many of KYLIN’s com-
ponents are simple baseline implementations, because we wished
an end-to-end system. We wish to apply learning to the problem of
document classification, consider more sophisticated ways of com-
bining heuristics (e.g., stacked metalearning), test on more cases,
make the result public (e.g., as a Firefox extension), and other im-
provements. In the longer term, we will investigate the following
directions:

• Schema Matching: Currently we took a simple statistical
way to clean infobox templates. More sophisticated strate-
gies for schema matching are desired.

• Information Verification: Besides automatic information
extraction, KYLIN should also be able to verify the correct-
ness of the extracted information so that inconsistency can be
correctly resolved. An intuitive way is utilizing outside Web
knowledge such as Google indices.

• Taxonomy Construction: Wikipedia contains many distinct
types of information, which have very similar schemata. List
and category information is rudimentary. Never-the-less, there
appears to be great potential for automatic construction of a
useful ontological resource.

• Topic Discovery: As the largest collaborative encyclope-
dia, Wikipedia should extend its coverage as much as pos-
sible. But as Wikipedia grows, it is getting harder and harder
for users to identify missing or incomplete articles. KYLIN
should be able to identify these topics, and facilitate users’
editting (for example, pointing users to useful information
sources outside Wikipedia).

7. ACKNOWLEDGMENTS
We thank Oren Etzioni, Alex Yates, Matt Broadhead, and Michele

Banko for providing the code of their software and useful discus-
sions. We also thank anonymous reviewers for valuable sugges-
tions and comments. This work was supported by NSF grant IIS-
0307906, ONR grant N00014-06-1-0147, SRI CALO grant 03-
000225 and the WRF / TJ Cable Professorship.

49

8. REFERENCES
[1] http://opennlp.sourceforge.net/.
[2] S. F. Adafre and M. de Rijke. Discovering missing links in

wikipedia. In Proceedings of the 3rd International Workshop
on Link Discovery at KDD05, Chicago, USA, August 2005.

[3] S. Auer and J. Lehmann. What have Innsbruck and Leipzig
in common? Extracting semantics from wiki content. In
ESWC, 2007.

[4] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and
O. Etzioni. Open information extraction from the Web. In
Proceedings of the 20th International Joint Conference on
Artificial Intelligence, 2007.

[5] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic
Web. Scientific American, May 2001.

[6] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[7] E. Brill, S. Dumais, and M. Banko. An analysis of the
AskMSR question-answering system. In Proceedings of
EMNLP, 2002.

[8] C. L. A. Clarke, G. V. Cormack, and T. R. Lynam. Exploiting
redundancy in question answering. In Proceedings of the
24th Annual International ACM SIGIR Conference, 2001.

[9] R. de Salvo Braz, R. Girju, V. Punyakanok, D. Roth, and
M. Sammons. An inference model for semantic entailment in
natural language. In National Conference on Artificial
Intelligence (AAAI), pages 1678–1679, 2005.

[10] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran,
T. Kanungo, S. Rajagopalan, A. Tomkins, J. Tomlin, and
J. Y. Zien. Semtag and Seeker: bootstrapping the Semantic
Web via automated semantic annotation. In Proceedings of
12th International World Wide Web Conference, pages
178–186, 2003.

[11] A. Doan and A. Halevy. Semantic integration research in the
database community: A brief survey. AI Magazine, Special
Issue on Semantic Integration, 2005.

[12] D. Downey, O. Etzioni, and S. Soderland. A probabilistic
model of redundancy in information extraction. In Procs. of
IJCAI 2005, 2005.

[13] S. Dumais, M. Banko, E. Brill, J. Lin, and A. Ng. Web
question answering: Is more always better? In Proceedings
of the 25th Annual International ACM SIGIR Conference,
2002.

[14] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu,
T. Shaked, S. Soderland, D. Weld, and A. Yates.
Unsupervised named-entity extraction from the Web: An
experimental study. Artificial Intelligence, 165(1):91–134,
2005.

[15] E. Gabrilovich and S. Markovitch. Overcoming the
brittleness bottleneck using wikipedia: Enhancing text
categorization with encyclopedic knowledge. In Proceedings
of the 21st National Conference on Artificial Intelligence,
pages 1301–1306, 2006.

[16] E. Gabrilovich and S. Markovitch. Computing semantic
relatedness using wikipedia-based explicit semantic analysis.
In Proceedings of The 20th International Joint Conference
on Artificial Intelligence, Hyderabad, India, January 2007.

[17] A. Y. Halevy, O. Etzioni, A. Doan, Z. G. Ives, J. Madhavan,
L. McDowell, and I. Tatarinov. Crossing the structure chasm.
In Proceedings of CIDR, 2003.

[18] C. T. Kwok, O. Etzioni, and D. Weld. Scaling question
answering to the Web. ACM Transactions on Information
Systems (TOIS), 19(3):242–262, 2001.

[19] J. Lafferty, A. McCallum, and F. Pereira. Conditional
random fields: Probabilistic models for segmenting and
labeling sequence data. In Proceedings of the 15th
International Conference on World Wide Web, Edinburgh,
Scotland, May 2001.

[20] B. MacCartney and C. D. Manning. Natural logic for textual
inference. In Workshop on Textual Entailment and
Paraphrasing, ACL 2007, 2007.

[21] A. K. McCallum. Mallet: A machine learning for language
toolkit. In http://mallet.cs.umass.edu, 2002.

[22] R. Meir and G. Rätsch. An introduction to boosting and
leveraging. Journal of Artificial Intelligence Research,
Advanced Lectures on Machine Learning:118–183, 2003.

[23] D. P. Nguyen, Y. Matsuo, and M. Ishizuka. Exploiting
syntactic and semantic information for relation extraction
from wikipedia. In IJCAI07-TextLinkWS, 2007.

[24] K. Nigam, J. Lafferty, and A. McCallum. Using maximum
entropy for text classification. In Proceedings of the
IJCAI-99 Workshop on Machine Learning for Information
Filtering, 1999.

[25] D. Opitz and R. Maclin. Popular ensemble methods: An
empirical study. Journal of Artificial Intelligence Research,
pages 169–198, 1999.

[26] S. P. Ponzetto and M. Strube. Deriving a large scale
taxonomy from wikipedia. In Proceedings of the 22st
National Conference on Artificial Intelligence, pages
1440–1445, 2007.

[27] E. Riloff and J. Shepherd. A corpus-based approach for
building semantic lexicons. In Proceedings of the Second
Conference on Empirical Methods in Natural Language
Processing, pages 117–124, Providence, RI, 1997.

[28] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A core
of semantic knowledge - unifying WordNet and Wikipedia.
In Proceedings of the 16th International Conference on
World Wide Web, 2007.

[29] M. Völkel, M. Krötzsch, D. Vrandecic, H. Haller, and
R. Studer. Semantic wikipedia. In Proceedings of the 15th
International Conference on World Wide Web, 2006.

[30] W. Wu, A. Doan, C. Yu, and W. Meng. Bootstrapping
domain ontology for Semantic Web services from source
web sites. In Proceedings of the VLDB-05 Workshop on
Technologies for E-Services, 2005.

50

